Posts

Hey there fellow shortwave enthusiasts!

I’m Garry from Tecson, and I’m thrilled to share with you the latest schedule for Radio New Zealand International (RNZI). Thanks to a fellow enthusiast who passed this along, we’re excited to dive into what RNZI has to offer our community.

RNZI has long been a cornerstone for those of us passionate about shortwave radio, providing in-depth news coverage, current affairs insights, and captivating audio features. Now, with their updated schedule effective March 31st, there’s even more to look forward to.

New Schedule Highlights:

Maintenance Day: Keep in mind, folks, that RNZI observes Maintenance Day on the first Wednesday of every month. From 2230 to 0600 UTC (Thursdays 1030 to 1800 NZST), there might be some interruptions to our regular programming. But hey, it’s all in the name of keeping those airwaves clear and crisp!

Satellite Availability: For those who prefer satellite access, RNZI has got you covered, thanks to TVNZ Pacific Service. Now you can tune in with ease, no matter where you are.

Frequency Details for RNZI:

– Satellite Slot: IS19/23 C Slot A

– Downlink Frequency:** 4146.5 V

– FEC:** 3/4

– Symbol Rate:** 5.6320

So there you have it, folks! With RNZI’s new schedule and these handy frequency details, we’re all set for some top-notch shortwave listening. Let’s keep those radios tuned and those ears open for the incredible stories and insights RNZI has in store for us.

 

Happy listening.

Tecsun Radios Australia Invites You to Share Your best Radio Shack Memories.

In a world buzzing with digital noise, there’s a timeless charm to the crackle and hum of a shortwave radio. It’s more than just a hobby; it’s a journey through time and space, a solitary pursuit that connects us across vast distances. At Tecsun Radios Australia, we understand the magic of shortwave, and we want to celebrate it with you.

Shortwave radio may seem like a solitary hobby, but it has a unique power to bring people together. Whether you’re tuning in to distant broadcasts or chatting with fellow enthusiasts online, there’s a sense of camaraderie that transcends borders and time zones. It’s about more than just the technology; it’s about the memories we create and the connections we forge.

That’s why we’re excited to invite you to participate in our latest competition. We want to see your favourite radio shacks and radios, old and new, and hear the stories behind them.

Whether it’s a vintage set passed down through generations or the latest Tecsun PL 990x, we want to celebrate the rich tapestry of shortwave radio culture.

To enter, simply snap a photo of you holding your oldest radio!  Tell us about the memories it holds, the places it’s taken you, and the people you’ve met along the way. We will also need your permission to share this across our social media, blog, and EDM (our email newsletter)

One lucky winner will receive a free copy of “Southern Signals” by Hugh Tranter – a fascinating exploration of Australia’s history through the lens of communication.

“Southern Signals” reminds us that communication has always been at the heart of human history. From sea-stained dispatches to data sent back from deep space, it’s a story of how we’ve bridged vast distances through war and peace, exploration and growth. It’s a reminder of the power of technology to shape our world and bring us closer together.

So dust off your old radios, fire up your new ones, and join us in celebrating the magic of shortwave radio. Together, let’s create new memories and honour the rich legacy of this timeless hobby. Share your photos, share your stories, and let’s keep the spirit of shortwave alive for generations to come.

Please note this competition runs till the end of March 2024.

To enter the competition simply send a photo of you with your oldest radio and send it via email to hello@tecsunradios.com.au we will reply once received!

Join the conversation on social media using the hashtag #TecsunRadioMemories. We can’t wait to see what treasures you uncover and the memories you share.

Want to know more about this fantastic prize book?  Click here https://www.nla.gov.au/stories/national-library-publishing/book-title/southern-signals

 

In a strategic move towards enhancing broadcasting capabilities in the Pacific region, Radio New Zealand (RNZ) has bid farewell to its long-serving 34-year-old shortwave Thompson transmitter, colloquially known as “Transmitter 1.” This transmitter, one of two facilitating analogue and digital radio broadcasts to the Pacific, has been powered down for the last time in preparation for the installation of a cutting-edge Swiss-made Ampegon shortwave transmitter at RNZ’s Rangitaiki site.

This undertaking represents a significant milestone for RNZ, which has relied on shortwave radio for the past 75 years to disseminate broadcasts across the vast Pacific. The replacement of the aging Transmitter 1 signifies a pivotal step in the futureproofing of RNZ’s service.

Installed just outside of Taupō in 1989, Transmitter 1, a 100-kilowatt Thompson unit, played a crucial role during the Commonwealth Games in Auckland in 1990. However, with the challenges posed by obsolete parts and the transmitter’s exclusive capability for analogue transmission, its replacement became imperative.

The forthcoming Ampegon shortwave transmitter, capable of both digital and analogue transmission, is en route to New Zealand after being meticulously crafted at Ampegon’s factory in Switzerland. Yet, before the new transmitter can be operational, Transmitter 1 must undergo decommissioning, with salvageable parts reserved for future use.

RNZ’s Transmission Engineer Specialist, Steve White, acknowledged the complexities of the switchover, highlighting the need to dismantle Transmitter 1 integrated into the existing building. White explained, “It will take around four weeks to completely dismantle Transmitter 1… We need to isolate the transmitter from the main switchboard, as well as drain the fluids that help cool the transmitter before breaking it into parts.”

The installation of the Ampegon transmitter is anticipated to commence in January, with an estimated six weeks for installation, six weeks for commissioning, and additional time for training. The operational date for the new transmitter is projected to be 1 May 2024.

Once Transmitter 1 is replaced, RNZ will boast two transmitters capable of both analogue and digital transmissions, ensuring a robust backup system in case of technical issues.

In the interim, RNZ Pacific Manager Moera Tuilaepa-Taylor assured that alternative means of accessing RNZ content would be communicated to all Pacific partners. While the analogue service experiences a reduction during the transition period, RNZ content can still be accessed via satellite, downloads, or livestreaming through the official website.

RNZ Chief Executive and Editor in Chief, Paul Thompson, emphasized the indispensable role RNZ plays in the Pacific region, providing critical information during events such as the Tonga eruption when undersea cables were severed. Recognizing its significance, the Government allocated $4.4 million in capital funding for a new transmitter for RNZ Pacific as part of Budget 2022, reaffirming its commitment to the international service provided by RNZ in both English and Pacific languages.

Shortwave radio listening, or SWLing, is a unique hobby that holds a special allure for enthusiasts. It’s a bit like finding hidden treasures in a vast, mysterious landscape, akin to discovering Easter eggs in video games. The enjoyment of SWLing stems from uncovering something that has always been there, waiting to be found, yet often overlooked or dismissed.

If you’re a dedicated shortwave radio enthusiast, you know that a significant part of the enjoyment comes from DXing. DXing, or long-distance listening, is the practice of tuning into distant radio stations, often from other countries or continents. It’s the equivalent of embarking on a grand adventure, where the reward is the joy of discovering elusive signals amidst the cacophony of static and interference. However, DXing is just the tip of the iceberg when it comes to maximizing your SWLing experience. Here, we explore additional tips to help you get the best out of your shortwave radio journey.

 

  1. Understand the Basics: The 25-30-20-25 Rule

To fully appreciate the magic of shortwave radio, it’s essential to grasp the fundamentals. SWLing is not just about the radio itself; it’s a synergy of factors that contribute to the overall experience. Imagine it like this: 25% of the magic lies in the radio you use, 30% is in your outdoor antenna setup, 20% depends on your knowledge of the right time and frequencies for listening, and the remaining 25% revolves around your location. For optimal results, invest in a good radio, set up an efficient antenna, master the art of timing, and seek out quiet places for listening.

 

  1. Dive into the Metaphorical World of SWLing

There’s a beautiful metaphorical world that can be associated with SWLing, allowing you to look beyond the surface and appreciate the deeper meaning of this hobby. Consider some of these associations:

Tuning into Enjoyable Frequencies: Just as in SWLing, in life, you can choose to tune into the enjoyable frequencies. Identify the things that bring you joy, fulfillment, satisfaction, and make a conscious effort to incorporate them into your daily routine.

Reducing Noise and Adjusting the Tuning: Life often presents noise in the form of irritations, annoyances, and distractions. Like adjusting the tuning on your radio, you can reduce this noise by addressing these irritations and finding ways to enhance your comfort and enjoyment.

The Tuning Is Off: Sometimes, the outcomes in life may not align with your desired goals. Just as in SWLing, where the tuning can be slightly off, in life, you may need to recalibrate your efforts and strategies to get closer to your desired outcomes.

Incorporating these metaphorical perspectives into your SWLing experience can add depth and meaning to your hobby, helping you draw parallels between the art of listening to shortwave radio and the art of living a fulfilling life.

SWLing is a journey of exploration, both in terms of uncovering hidden radio signals and discovering the subtle, metaphorical messages it holds for our lives. By understanding the 25-30-20-25 rule, investing in quality equipment, and embracing the metaphorical aspects, you can truly unlock the magic of shortwave radio and enjoy the profound rewards it offers. So, keep tuning in, and let the hidden secrets of the shortwave world continue to captivate your imagination and enrich your life.

 

slow morse code nets radio

We often invite our community to write in and let us know about any interesting events. We got a great email from Mark who runs a slow morse code net every week! 

We will share his details in next week’s newsletter. Stay tuned.

Some of the younger folk in the office said, slow morse code? what is that? So we thought it was high time we created a blog on this very topic.

So, what is Morse code? It is a communication system developed in the early 1800s, that involves creating messages, where each letter of a word is sent as a sequence of dots and dashes. This system is transmitted via sound or visual signals, typically with the help of devices like telegraphs, lamps, or radios. Slow Morse code, often referred to as “QRSS” (which stands for “QR” for “to receive slower,” and “SS” for “to send slower”), is a variant of traditional Morse code designed for low-speed communication and radio enthusiasts. Here’s how it works, how to access it, and why people enjoy this hobby:

How Slow Morse Code Works

  1. Encoding: Slow Morse code uses the same fundamental principles as traditional Morse code. Letters, numbers, and symbols are represented by combinations of short signals (dots) and long signals (dashes).
  2. Speed Reduction: The primary difference is in the speed of transmission. While traditional Morse code can be relatively fast, slow Morse code is intentionally slowed down. Each character can be extended to several seconds, making it much more accessible for newcomers and hobbyists.
  3. Transmission: Slow Morse code is transmitted using radio waves or light signals. Radio enthusiasts often use specialized devices and software to encode and decode these signals.
  4. Decoding: The receiver uses a device, like the Tecsun Radios Australia SDR (Software-Defined Radio), to capture the radio signals and convert them into visual or audible Morse code.

Accessing Slow Morse Code

  1. Equipment: To access slow Morse code, you need a suitable radio receiver. Tecsun Radios Australia SDR is an example of a device that can be used for this purpose. It allows you to tune into specific frequency bands.
  2. Tuning In: With your SDR, you can select the frequency range where slow Morse code transmissions are taking place. Radio hobbyists often monitor certain bands allocated for amateur radio Morse code communication.
  3. Waterfall Display: The Tecsun Radios Australia SDR and similar devices often include a “waterfall display.” This display shows a visual representation of the spectrum over time, making it easier to identify and decode slow Morse code signals. Operators can visually follow the patterns of dots and dashes on the display.

Why People Enjoy Slow Morse Code as a Hobby

  1. Technical Challenge: Slow Morse code provides a technical challenge for enthusiasts. It requires understanding of radio equipment, propagation conditions, and signal decoding.
  2. Nostalgia: Many hobbyists are drawn to Morse code due to its historical significance in radio communication.
  3. Community: Slow Morse code has a dedicated community of enthusiasts who share information, tips, and participate in events Just like Mark’s local net we will share with you in next week’s Newsleter.
  4. Relaxation: The slow pace of Morse code can be calming for some people. It allows for a more relaxed and methodical approach to communication.
  5. Unique Skills: Learning Morse code is a unique skill, and many enjoy the sense of accomplishment that comes with mastering it.

Slow Morse code is a variant of Morse code that is enjoyed by radio enthusiasts. The slow pace, technical aspects, and sense of community make it an attractive hobby for those interested in both history and modern radio technology. The ability to watch the whole band segment on a waterfall display aids in decoding the signals, adding an extra layer of enjoyment for enthusiasts.

The night sky often looks incredible, but on the night of August 12, 2023, one Finnish DX (long-distance radio) enthusiast, Koe Kone, experienced an unexpected twist during the annual Perseids meteor shower. While gazing at the streaking meteors, Kone discovered a boost in German DAB (Digital Audio Broadcasting) signals, marking the first-ever documented instance of meteor-induced interference on VHF band III DAB signals.

Koe Kone, a dedicated DX hobbyist based in Turku, Finland, enjoys the challenge of seeking out distant broadcast signals. His YouTube channel showcases a treasure trove of recordings capturing broadcasts from across the Baltic Sea and beyond. However, it was during the meteor shower’s peak activity that Kone stumbled upon a radio phenomenon that had eluded detection until now.

The notion that atmospheric and celestial conditions can influence radio broadcasting is not a novel one. For decades, radio enthusiasts have observed the impact of meteor showers on radio signal propagation. Differences in the ionosphere between day and night have been known to affect the reach of AM signals, while temperature inversions in the troposphere can cause FM signals to ‘skip’ to distant markets.

As early as the 1930s, researchers recognised that meteor showers played a role in radio signal propagation. Enthusiasts and amateur radio operators have even used FM receivers to eavesdrop on meteor showers.

Kone’s groundbreaking discovery was made possible through his use of an Airspy Mini scanner and QIRX SDR software for signal reception. He paired these tools with a formidable 13-element VHF band III yagi antenna positioned at a lofty 48 meters above sea level. This setup allowed Kone to successfully receive and decode a signal emanating from a German multiplex operating in block 5C.

Intriguingly, Kone’s decoded stations led him to identify five potential transmission sources in Germany: Casekow, Pritzwalk, or Templin in Brandenburg; Röbel, Rostock, or Züssow in Mecklenburg–Vorpommern; and Garz on the picturesque island of Rügen, also situated in Mecklenburg–Vorpommern. Astonishingly, the closest of these sites is approximately 800 kilometers (nearly 500 miles) away from Kone’s reception site in southwestern Finland.

During the peak of his listening experience on August 12, Kone’s receiver displayed three adjacent DAB multiplexes on blocks 5B, 5C, and 5D. Although he couldn’t decode all the signals, he did capture brief bursts from blocks 5C and 5D in the early hours of August 11.

Sharing his discovery with the “DAB/DAB+ Digital & Online Radio” Facebook group, Kone reflected on his past successes in capturing Swedish DAB stations. However, the meteor shower recording was different. He noted, “This in the video was quite different, being a meteor scatter and lasted only a few seconds.”

 

Koe Kone’s discovery serves as a testament to the wonders that can be unveiled when technology, passion, and the mysteries of the cosmos converge. The meteor-induced boost to DAB signals not only adds a new layer of intrigue to the world of DX enthusiasts but also reminds us of the possibilities to discover. As we continue to explore the radio spectrum, who knows what other cosmic secrets may await discovery in the silent spaces between the stars?

This blog is perfect to share with younger generations, be that grandkids, nieces, nephews, and friends! We even have some fantastic dot to dot drawings printed in the back of our shortwave radio listener guides that come free with all radios purchased on our webstore. Perfect for the upcoming school holidays!!!

Hey there, curious minds! Are you ready to embark on a scientific adventure that combines learning, exploration, and a touch of magic? Today, we’re diving into the captivating world of shortwave radio and discovering how this fascinating technology can be an educational powerhouse for kids like you. So, buckle up, grab your lab coats, and let’s dive into the science of shortwave radio!

What is Shortwave Radio?

Shortwave radio is a form of radio communication that uses high-frequency signals to transmit messages over long distances. Unlike FM or AM radio, shortwave signals can bounce off the Earth’s atmosphere and travel across continents, making it possible to tune in to stations from around the world.

The Science Behind Shortwave Radio:

Shortwave radio operates on a principle called “skywave propagation.” It involves the reflection and refraction of radio waves in the Earth’s ionosphere, a layer of charged particles high in the atmosphere. When shortwave signals encounter the ionosphere, they can be refracted or bounced back to the Earth’s surface, allowing them to travel far beyond the transmitter’s line of sight.

Exploring Radio Wave Behavior:

Understanding the behavior of radio waves is like uncovering a secret code. With shortwave radio, you can experiment and observe how different factors affect signal strength and quality. For instance, you can build your own simple antennas using everyday materials to discover how their size, shape, and positioning affect reception. It’s a hands-on way to learn about physics, electromagnetism, and the importance of engineering in communication systems.

Language Learning and Cultural Exploration:

Shortwave radio provides a unique opportunity to explore different languages and cultures from the comfort of your own home. Tune in to stations broadcasting in various languages and experience the beauty and diversity of global communication. Immerse yourself in different accents, music, news, and stories, expanding your language skills and developing a global perspective.

Building Emergency Preparedness Skills:

Shortwave radio is not just about science and culture; it also plays a vital role in emergency communication. During emergencies or natural disasters, traditional communication networks may fail, but shortwave radio can remain operational. Learning how to use and listen to shortwave radios equips you with valuable emergency preparedness skills. It empowers you to stay informed, connect with others, and even assist in disseminating vital information during times of crisis.

Igniting a Lifelong Passion:

By exploring the science of shortwave radio at a young age, you may ignite a passion for science, technology, and communication that will last a lifetime. You could become an amateur radio operator, build your own radios, or even pursue a career in engineering, telecommunications, or physics. The possibilities are as vast as the airwaves themselves!

So, young adventurers, as you journey through the captivating world of shortwave radio, remember that science is all around you, waiting to be explored. By tinkering with antennas, observing radio wave behavior, embracing cultural diversity, and preparing for emergencies, you can become a true radio explorer. Unleash your curiosity, ask questions, and let the magic of shortwave radio inspire you to reach for the stars!

Are you ready to embark on this exciting scientific journey? Grab your headphones, tune in to the frequencies of knowledge, and let the science of shortwave radio whisk you away to places both near and far.

Happy exploring, young scientists!

 A celebration of how amateur radio has been serving people for over 100 years.

With over 3 million radio amateurs worldwide this day is the perfect time to tune in and connect with fellow hobbyists.

Date: Tuesday, April 18, 2023

Time : All Day

This year’s theme is “Human Security for All, HS4A” 

The theme is born from a first time partnership between the United Nations Trust Fund for Human Security and the World Academy of Art and Science in conjunction with IARU, in a campaign to highlight the role that amateur radio plays in addressing the world’s most pressing needs.

Human Security measures security at the individual level. First introduced by the U.N. in 1994, the concept identifies seven interrelated dimensions of security that are essential to an individual’s wellbeing: economic, food, health, environmental, personal, community, and political.

The partners believe Amateur Radio is uniquely positioned to address people-centered, context-specific security challenges by promoting technical knowledge, practical skills, innovative technology, and the deployment of backup systems at the community level that can be called upon in times of emergency. The pandemic, climate change, natural disasters, and armed conflicts on several continents undermine our security, and respect no boundaries. Amateur Radio has repeatedly demonstrated its ability to address human security needs. It is a truly global communications medium comprising some three million radio enthusiasts connecting communities and the peoples of the world.

Every year on April 18, Radio Amateurs worldwide take to the airwaves in celebration of Amateur Radio Day. This year the IARU and its member-societies will be conducting a special two-week on-the-air event 11–25 April. Special event stations will be operating from around the world, making two-way radio contacts to call attention to the HS4A campaign. There are a number of stations involved.

Simply click this link to participate https://hs4a.iaru.org/,to read more and participate,  look for the blue participate button on the top right of the page and register.

We would love to hear if you are planning to participate.

Products we recommend for this event are the XIEGU G90 HF Transceiver, our HF Amateur Radio Dipole Antenna, and of course, our ultra-comfortable TRA communications headphones, so you can block out the world and improve your listening comfort!

 

 

 

We came across a story this month that reminded us of the importance of being educated in radio communication and a reminder of what a resourceful,  knowledgeable, and helpful community amateur radio operators are.

On September 7, 2022, a boat named  SV Nereida traveling from ​​Cape Flattery, the northwesternmost point of the USA to San Francisco, California became disabled after 2 days of 35 knot winds and storms. 

81 year old Jan Socrates, an experienced sailor who has sailed around the world without assistance, and in fact has been the oldest person to do so, found herself very low on power and her onboard radio equipment marginally operational. But her knowledge of amateur meant she knew how to get her message out to a community who could help!

Amateur operators in New Mexico, California, and Canada, and members of Group 7.155 heard her requests for assistance.

One such person who heard her request and in fact was able to contact Socrates on 40 metres was Gil Gray, N2GG. “Her power was extremely low, and she was unable to communicate on 14.300 MHz to notify the monitoring group on that frequency,” said Gray. “She needed help with wind and sea conditions, and tidal data for San Francisco Bay,” he added.

Q5 copy was almost impossible due to the low-power output on the HF radio which would typically be Q2 or Q3. Thankfully several software-defined radio (SDR) operators were on hand  in California, Utah, and Maui, Hawaii, who were able to glean enough copy to understand her situation and answer questions for her navigation.

Another stroke of luck was that several of these radio operators were also experienced sailors and helped guide Socrates through periodic contact with weather and wind reports.

Their last contact was on Monday, September 12, at 11:00 AM (MSDT). By this time, Socrates was sailing with only the forward sail on her 38-foot sloop. Thankfully, a “following wind” kept her moving without a mainsail. 

As the Golden Gate Bridge appeared within sight, Socrates was able to use the tidal information passed on by amateur radio operators to make it safely to Berkeley Marina in San Francisco Bay.

“I wouldn’t call it a rescue,” said Socrates, “just good amateur radio assistance — and I’m grateful for their help.”

This is actually one of 3 events in September in which amateur radio was able to provide emergency assistance.

If you would like to learn more about Jan Socrates’ travels, take a look at her Facebook page.

Do you know somebody who loves to travel and who would benefit from knowledge of shortwave? Send them this article, and indeed a link to this website as we have lots in interesting shortwave news, links, and resources, as well as the best range of shortwave radios available in Australia.

Adapted from the original article that can be found on https://www.arrl.org/news/

 

 

Xiegu G90 transceiver

Xiegu G90 HF portable transceiver by Alan McPhail, VK2AMC 

We were delighted to receive this fantastic  “Rig Review” from fellow radio enthusiast Alan McPhail. His story starts below!!

In 1951, as a four-year-old, I first became aware of amateur radio. My father had been transferred to Townsville by the Department of Civil Aviation and, while sitting in the rear of my parents 1934 Continental Beacon, I saw an HF quad antenna mounted on a tower.

My father explained to me that the antenna was at the home of a radio amateur and it allowed him to talk with people around Australia and the world by radio. This was the beginning of my interest in amateur radio. I have been licensed since 1978, but because of an interesting career, I did not become active on the bands until 2011 and then only occasionally.

After a lightning strike at home in 2015 along with the subsequent fire that burnt through the roof space, the house was severely damaged, contents written off and I lost most of my equipment.

The rebuild of the house took 13 months to complete and the subsequent time to resettle limited my amateur radio pursuits. Our home is on a corner block and the backyard garden is unsuitable for setting up a permanent antenna. I have experimented with dipoles but most often I used a home-built Buddistick antenna (www.buddipole.com).

When I was asked to review the G90 I was reticent to accept the task, not because of my extensive electrical and communications engineering background but because I did not have enough experience as an operator on the amateur bands. I note that in-depth reviews have been done by the RSGB, the ARRL, and on YouTube. The G90 has an active and supportive user group. It was suggested that I should share my user experience of the G90 for Amateur Radio readers.

Xiegu G90

I needed to do some preparatory work to power the G90 and choose an antenna. I fitted Anderson Powerpole connectors to my 4200 mAh LiFePo4 battery and to the battery end of the G90 power cable. I connected the G90 to the battery and a short inside wire antenna. This was sufficient to check that the G90 was working on receive and to become familiar with the basic controls. Initially, I tuned to the ABC frequencies in the broadcast band and experimented with the filter control width and position. The operation manual was easy to follow, and others have improved versions available. Initial observations The colour display is approximately 4.5 cm (1.8”), but it displays a large amount of information very effectively, making the front panel appear larger than it is. On the air Every Friday between 09:00 and 10:00 hours, the Hornsby and District Amateur Radio Club (HADARC) conducts a 40 m net on 7.106 MHz. I thought this would be an ideal occasion to test the G90 on-air. I used a 10 metre length of coaxial cable to connect the transceiver to the antenna. My home-built Buddistick antenna was assembled and slid into the lower three sections of a 7 m-tall telescopic fiberglass mast, increasing the overall height of the antenna by 2.9 m. After installing the antenna counterpoise, I switched on the power to the G90 and tuned to a vacant frequency on 40 m, switched to the AM mode, and pressed the transmit key. The SWR was very high and I checked the antenna connections. Normally, I would adjust the counterpoise length to try to reduce the SWR. However, as I had read good reports about the auto tuner, I decided to activate it. 

After a few clicks of changing relays, the SWR dropped to 1:1 and I tuned to the net frequency and joined the net. I spent an hour with the group whose reports on my signal were very encouraging. I could hear most of the participants and received “5 and 9” from several of the participants. Being able to join the group net so quickly on the fi rst setup is a demonstration of how easy the G90 is to operate. The 20 W power output also helped in successfully communicating with more participants than I have previously achieved with my 5 W transceiver. Being able to see the power supply voltage on the display was useful in monitoring my new battery. When switched off, the G90 saves the frequency and mode settings as the start-up values for the next time the rig is turned on. I joined the HADARC Net on a second occasion and I found the controls to be tactile and the panel layout convenient. The receiver audio was of good quality while the ±24 kHz bandwidth spectrum display and SWR scanner were very useful and easy-to-use features. A feature for the hearing impaired in CW mode is the yellow LED that indicates when a signal is being received if there is good reception. The controls There are four pushbutton switches on the top horizontal portion of the front panel, a pair to step up or down the bands, and a pair to cycle through the modes: LSB, USB, CW, CWR and AM. The three front-panel knobs are: • Volume control; a short press will toggle to and from the headphones; • Multi-function Adjustment default steps at 100 kHz and a short press enters the receive mode filter allowing adjustment of the bandwidth and position of the filter. The default operation of the knob can be changed with a long press to change other parameters;

In summary:

The Xiegu G90 is a capable HF QRP transceiver that has easy-to-use – controls with an information-rich colour display. The 20 W output power, adjustable from 1 W, would be appealing to QRP and DX operators, particularly for SOTA and POTA. The standing wave scanner and automatic antenna tuner would also be useful in the field. Above all, I found the Xiegu G90 HF Transceiver was fun to operate.

Read the full article which includes additional tips, information, and even information about the Xiegu G90s portability, click here

The team here at Tecsun Radios Australia are serious about amateur radio and have found the G90 to be fantastic value for a receiver with this power and capabilities on the market.

Thank you the Wireless Institute of Australia for this information.

Get your G90 here 

Transceiver radio